SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 QUES TION BANK (DESCRIPTIVE)

Subject with Code: DIGITAL CIRCUITS DESIGN (23EC0403)

Course & Branch: B. Tech – ECE

Year & Semester: II - B. Tech. & I-Semester

Regulation: R23

UNIT-I

BOOLEAN ALGEBRA, LOGIC OPERATIONS, AND MINIMIZATION OF BOOLEAN FUNCTIONS

PART-A (2 MARKS)

1.	(a)	List out the types of number systems with one example for each.	[L2][CO1]	[2M]		
	(b)	Convert (41.6875) ₁₀ to Hexadecimal number.	[L5][CO1]	[2M]		
	(c)	Write the truth table for $F=(A+B)(C+D)$	[L2][CO1]			
	(d)	What are Universal Gates? Give their truth tables.	[L1][C01]	[2M]		
	(e)	Perform the following Subtraction using 10's complement method. i) 3456 – 245 ii) 631-745	[L1][CO1]	[2M]		

2.	(a)	Convert the following numbers:	[L5][CO1]	[5M]
		i) $(AB)_{16}=()_2$ ii) $(1234)_8=()_{16}$ (iii) $(1000011)_2=()_{10}$		
	(b)	Convert the following to binary and then to gray code.	[L5][CO1]	[5M]
		i) (AB33) ₁₆ ii) (BC54) ₁₆		
3.		Convert the following:	[L6][CO1]	[10M]
		a) $(1AD)_{16}=()_{10}$		
		b) $(453)_8 = ()_{10}$		
		c) $(10110.0101)_2 = ()_{10}$		
		d) $(5436)_{10} = ()_{16}$		
		e) $(647)_{10} = ()_8$		
4.	(a)	Perform the following subtraction by using 1's complement.	[L1][CO1]	[5M]
		i) 111001-1010 ii) 0011-10001		
	(b)	Explain about the Binary Codes in detail.	[L1][CO1]	[5M]
5.	(a)	State and prove the following Boolean laws:	[L3][CO1]	[5M]
		i) Commutative ii) Associative		
	(b)	Prove De Morgan's theorems using Perfect Induction Method.	[L3][CO1]	[5M]
6.	(a)	Simplify the given Boolean expression to a sum of 3 terms.	[L4][CO2]	[5M]
		A'C'D' + AC' + BCD + A'CD' + A'BC + AB'C'		
	(b)	Realize the following Boolean function using minimum number of	[L4][CO2]	[5M]
		logic gates.		
		f = xyz + xyz + xyz + xyz		
7.		Obtain the Dual and complement to the following Boolean expressions.	[L1][CO2]	[10M]
		(1) $AB'C+AB'D+A'B'$		
0		(11) A B C+ABC +A B C D Ulustrate the digital logic actes with graphical symbol, alashrois function and truth		[10]/[]
0.		table		
9		Express the following Boolean functions into Canonical form	[L2][C02]	[10M]
<i>.</i>		i) F1=AB+BC+CA		
		ii) $F2=XY+Z+YZ+XYZ$		
10.	(a)	Simplify the expression f(x, y, z)= Σ (0,1,2, 3, 6, 7)	[L4][CO3]	[5M]

	(b)	Obtain the simplified SOP and POS form of the following boolean expression, $Y = B C + A C' + A B + A B C$ using K-map.	[L1][CO3]	[5M]
11.	(a)	Simplify the Boolean expression, F=A'+AB+ABD'+AB'D'+C' using Four Variable K-Map. and draw the logic diagram using AOI logic.	[L4][CO3]	[5M]
	(b)	Simplify the expression in S O P form using don't cares. $Y=\Sigma (4,5,6,8,9) + d\Sigma (3,7,10,11,14,15)$	[L4][CO3]	[5M]

UNIT- II

COMBINATIONAL LOGIC CIRCUITS

PART-A (2 MARKS)

1.	(a)	Define a Combinational Circuit and draw its block diagram.	[L1][CO4]	[2M]
	(b)	Define the following: i) Half adder and ii) Full Adder	[L1][CO4]	[2M]
	(c)	List the applications of encoder and decoder.	[L1][CO4]	[2M]
	(d)	What is a Priority encoder?	[L1][CO4]	[2M]
	(e)	Define Multiplexer and Demultiplexer.	[L1][CO4]	[2M]

2.	(a)	Explain the procedure of designing a combinational logic circuit with an	[L2][CO4]	[5M]
		example.		
	(b)	Design & implement Half Adder and Half subtractor logic circuit using truth table.	[L3][CO4]	[5M]
3.	(a)	Define a Full Adder and realize Full Adder circuit using truth table	[L3][CO4]	[5M]
	(b)	Design a Full Subtractor using truth table.	[L3][CO4]	[5M]
4.	(a)	Design a 4 bit parallel adder/ Subtractor using full adders.	[L3][CO4]	[5M]
	(b)	Design & implement a 4-bit Binary-to-Gray code converter.	[L3][CO4]	[5M]
5.	(a)	Design a 4 bit Binary-to-BCD code converter.	[L3][CO4]	[5M]
	(b)	Construct a BCD Adder-circuit using 4-bit binary adders.	[L3][CO4]	[5M]
6.	(a)	Explain about Decimal Adder with a neat diagram.	[L2][CO4]	[5M]
	(b)	Explain the working of a Carry- Look ahead adder.	[L2][CO4]	[5M]
7.		Explain Binary Multiplier with an example.	[L2][CO4]	[10M]
8.	(a)	What is a Magnitude comparator?	[L1][CO4]	[3M]
	(b)	Explain a 2-bit Magnitude comparator and write down its design procedure.	[L2][CO4]	[7M]
9.	(a)	What is encoder? Design octal to binary encoder.	[L3][CO4]	[5M]
	(b)	Define Decoder and explain in detail about a 2 to 4 line binary decoder.	[L2][CO4]	[5M]
10.	(a)	Draw the circuit for 3 to 8 decoder and explain.	[L2][CO4]	[5M]
	(b)	Define Multiplexer. Construct 4:1 multiplexer with logic gates and truth table.	[L3][CO4]	[5M]
11.	(a)	Represent the following Boolean function with an 8:1 multiplexer.	[L2][CO4]	[5M]
		$F(A,B,C,D) = A^{\prime}BD^{\prime} + ACD + B^{\prime}CD + A^{\prime}C^{\prime}D.$		
	(b)	What is Demultiplexer? Design an 1:8 demultiplexer using two 1:4 demultiplexer.	[L3][CO4]	[5M]

UNIT-III

HARDWARE DESCRIPTION LANGUAGE

PART-A (2 MARKS)

	(a)	Differentiate between Verilog and VHDL	[L4][CO6]	[2M]
1.	(b)	Define the structural and behavioral representation of logic circuits.	[L1][CO6]	[2M]
	(c) Explain about the module representation of logic circuits in Verilog.		[L1][CO6]	[2M]
	(d) What are Verilog parallel case and full case statements?		[L2][CO6]	[2M]
	(e)	What is the Sensitivity list?	[L1][CO6]	[2M]

	a) What is the syntax used to write a Verilog Code	[L1][CO6]	[4M]
2.	b) Write Verilog code to implement the function		
	f(x1, x2, x3) = m(0, 1, 3, 4, 5, 6) using the continuous assignment.		
3.	Explain about the Hierarchial Verilog code with an example.	[L1][CO6]	[10M]
	a) Write Verilog code to implement the function		
	f(x1, x2, x3) = m(1, 2, 3, 4, 5, 6) using the gate-level primitives. Ensure that	[L1][CO6]	[5M]
	the resulting circuit is as simple as possible.		
	b) Write Verilog code that represents the logic circuit shown in Figure below.		
	Use only continuous assignment statements to specify the required		
	functions.		
4.			
		[L1][CO6]	[5M]
			r. 1
	a) Write Verilog code for the following logic circuit diagram using behavioral		
	structure representation.		
	x,		
		[L1][CO6]	[5M]
5.			
	b) Write an Verling code for Half Adder and Full Subtractor with the help of	[L1][CO6]	[5M]
	Truin tables.		
6.	while vertice code to implement the Boolean function $E = A^2 + AD^2 + AD^2 + AD^2 + C^2$	[L1][CO6]	[10M]
	$\Gamma - A + AD + ADD + ADD + C$		[5]/[]
7.	a) while all verifing code for Full Adder with the help of Truth table.		[5]VI]
	b) Design an BCD adder and write the code for it in verilog		[5]VI]
8.	a) Explain Conditional operator in Verilog with an example.	[L2][C00]	[5]VI]
	a) State the importance of CAD Tools in HDI	$[L_2][CO0]$	[5]VI]
9.	a) State the importance of CAD Tools in TIDL. b) Explain case statement in Verilog with an example	[L1][C06]	[5N]
10	Write an Verilog code for 2 Bit binary multiplier in structural Model		[31 1]
10.	a) Write an Verilog code for 16x1 MUX in behavioral Model		[5M]
11.	b) State For loop statement in Verilog and explain the same with an example	[L1][CO6]	[5][5][5][5][5][5][5][5][5][5][5][5][5][

UNIT- IV SEQUENTIAL LOGIC CIRCUITS

PART-A (2 MARKS)

1.	(a)	Difference between Latch and Flip-flop?	[L4][CO4]	[2M]
	(b)	What is race condition?	[L1][CO4]	[2M]
	(c)	What is sequential circuit?	[L1][CO4]	[2M]
	(d)	What is the application of T flip flop?	[L1][CO4]	[2M]
	(e)	Write a short note on Register.	[L1][CO4]	[2M]

PART-B (10 MARKS)

	a) Define a sequential logic circuit and sketch its block diagram	[L1][CO4]	[3M]
2.	b) Differentiate between combinational and sequential circuits.	[L1][CO4]	[3M]
	c) Differentiate between synchronous and asynchronous sequential circuits.	[L2][CO4]	[4M]
	a) Define Latch and list different types of Latches.	[L1][CO4]	[3M]
2	b) Define Flip-Flop. What are the different types of Flip-Flops?	[L1][CO4]	[3M]
э.	c) Explain the working principle of RS Flip-Flop with the help of logic diagram and give its Characteristic Table and Graphic symbol.	[L2][CO4]	[4M]
4.	a) With the help of logic diagram, obtain the characteristic table of D & T Flip- Flops. Also draw their graphic symbols.		[5M]
	b) Explain the working principle of JK Flip-Flop in detail. Also give its characteristic equation, Graphic symbol and Excitation equation.	[L2][CO4]	[5M]
5	a) Convert SR flip flop into JK Flip-Flop. Draw and explain its logic diagram.	[L2][CO4]	[5M]
5.	b) Design T Flip Flop using JK Flip-Flop and explain its logic diagram.	[L3][CO4]	[5M]
6	a) Derive the excitation tables for SR, D, JK, and T Flip-Flops.	[L3][CO4]	[5M]
0.	b)Explain about the Ring counter in detail.	[L2][CO4]	[5M]
7	a) Explain about the Johnson counter in detail.	[L2][CO4]	[5M]
7.	b) Define a counter and design a 4-bit Ripple counter.	[L1][CO4]	[5M]
8.	Design a 4 bit Decade counter.	[L4][CO4]	[10M]
9	What is a synchronous counter? Design a 3-bit synchronous up/down counter.	[L4][CO4]	[10M]
10.	Define a Shift register and explain its types.	[L2][CO4]	[10M]
11	a) Write an Verilog code for 4- bit ring counter	[L1][CO6]	[5M]
11.	b) Design an 2-bit synchronous up-counter using Verilog Code.	[L6][CO6]	[5M]

UNIT- V FINITE STATE MACHINES AND PROGRAMMABLE LOGIC DEVICES

PART-A (2 MARKS)

	(a)	What are the differences between Moore and Mealy Machines?	[L1][CO2]	[2M]
	(b)	List some of the limitations of finite state machines.	[L1][CO2]	[2M]
1.	(c)	State the types of ROM	[L1][CO5]	[2M]
	(d)	List the major differences between PLA and PAL	[L1][CO5]	[2M]
	(e)	List basic types of programmable logic devices.	[L1][CO5]	[2M]

					/			
	a) Define Mealy model and explain it with neat diagram.					[L1][CO2]	[3M]	
2.	b) Define M	loore mo	del. Explain	it with neat d	liagram.		[L1][CO2]	[3M]
	c) Distinguish between Mealy & Moore machines.						[L2][CO2]	[4M]
3	Explain the	followin	g related to	sequential cir	cuits with sui	table examples:		[10M]
5.	a) State diag	gram	b) St	ate table	c) State assi	gnment		
	Derive the s	simplified	d sequential	circuit for the	e following sta	ate table.		
		PS	N	ext State	Ou Ou	itput		
			X=0	X=1	X=0	X=1		
		A	a	b	0	0		
4.		B	c	d	0	0	[L3][CO2]	[10M]
		C	a	d	0	0	[][]	[]
		D	e	f	0	1		
		E	a	f	0	1		
		F	g	f	0	1		
		G	a	f	0	1		
	Determine t	the minin	nal state equ	ivalent of the	state table gi	ven.		
		PS	N	ext State	Ou	itput		
			X=0	X=1	X=0	X=1		
		A	а	b	0	0		
~		В	с	g	0	1		[10] []
5.		С	а	d	0	0	[L3][CO2]	
		D	e	f	0	1		
		E	с	g	0	1		
		F	а	b	0	0		
		G	E	f	0	1		
	Eurolain and	Design	· Company	Detector				
6.	Explain and	Design	a Sequence I	Detector.			[L2][CO5]	[10M]
	Evoloin in k	oriof abou	it Drogramm	able Peed O	nly Momory (DDOM) with a		
7.			it Flogramm	lable Keau Ol	iny Memory (r KOWI) wiul a	[L2][CO5]	[10M]
	suitable exa	suitable example.						
8.	Illustrate the	e PLA to	r the follows	ing Boolean f	unction. $\sum_{i=1}^{n} (1, 2, 2, 4, 5)$	`	[L3][CO5]	[10M]
	(1) F	$r_1 = 2m(0)$,1,3,4)	$(11) F_2 =$	$\frac{\Sigma m(1,2,3,4,5)}{2}$).		
0	Illustrate PI $E(A, B, C)$	ΔA for the $\sum (2.5)^{1}$	e following .	Boolean func	tion.			[10]/1
9.	$F_1(A,B,C) = \Sigma m(3,5,7)$							
	$\Gamma_2(A, B, C)$	$\sim DAI_{-}$	$\frac{3,7}{2}$	ing Dooloon f	inations			
10	$(i) \Lambda(\mathbf{w} \mathbf{x} \mathbf{y})$	e FAL 10 $z) = \Sigma m($	0267801	(2 13)	unctions.		II 31[CO5]	[10M]
10.	$(i) \Lambda(w,x,y)$ (ii) B(w x y)	$(z_j - \Delta m(z_j)) = \Sigma r$	n(0.2,0,7,0,9,1)	(2,13)				[TOTAT]
	a) Draw and	<u>, , , , , , , , , , , , , , , , , , , </u>	explain the last state of th	hasic structur	es of CPLD &	x FPGA	[L2][C05]	[5M]
11.	b) Compare PROM.PLA & PLA					[L2][CO5]	[5M]	